Rancang Bangun Stetoscope Elektronik Berbasis Mikrokontroller Atmega328

Endang Dian[#], Sumber

Jurusan Teknik Elektromedik Poltekkes Kemenkes, Surabaya Jl. Pucang Jajar Timur No. 10, Surabaya, 60245, Indonesia "diancholik@gmail.com, sumberrani @gmail.com,

Abstrak—Berdasarkan data yang dikeluarkan oleh Organisasi Kesehatan Dunia (WHO) pada April 2011, kematian yang disebabkan oleh penyakit jantung koroner yang tidak menular telah mencapai 37% dari total jumlah kematian di Indonesia. Selain itu, dalam laporan WHO lain menyatakan bahwa pada tahun 2020, diperkirakan bahwa penyakit jantung koroner akan menjadi penyakit pembunuh utama di negara-negara di seluruh Asia-Pasifik. Tujuan dari penelitian adalah merancang deteksi sinyal jantung menggunakan stetoskop elektronik dengan sensor mic condensor untuk membandingkan nilai S1 (suara lub), S2 (suara dub), suara S3 yang disebabkan oleh osilasi darah antara dinding aorta dan ventrikular serta S4 yang disebabkan oleh turbulensi injeksi darah. Rancang bangun utama terdiri dari rangkaian pre-amp, filter jantung, mikrokontroller atmega 328p yang ditampilkan pada pc menggunakan delphi. Responden terdiri dari 5 laki-laki dan 5 perempuan, rentan usia berkisar antara 20 hingga 25 tahun, sedangkan untuk berat badan responden antara 50 hingga 76 Kg. Posisi perekaman suara jantung yang digunakan berbeda-beda untuk setiap respondennya, pada responden laki-laki didapatkan nilai amplitudo S1 dan S2 maksimal pada posisi perekaman Right Ventricel (RM), sedangkan untuk responden perempuan nilai amplitudo S1 dan S2 maksimal pada posisi perekaman Aortic (AO) dan Pulmonary Artery (PM). Untuk responden laki-laki maupun perempuan Ada banyak faktor yang mempengaruhi amplitudo S1 dan S2 setiap pasien sedangkan untuk nilai S3 dan S4 tidak terlihat dengan jelas. Jika berat badan responden diatas berat badan idealnya maka amplitudo S1 dan S2 akan cenderung lebih kecil dan sebaliknya, jika berat badan responden kurang dari berat badan idealnya maka amplitudo S1 dan S2 akan cenderung lebih besar. Selain itu juga, seberapa kuat stetoskop ditekan ketika melakukan perekaman juga dapat mempengaruhi amplitudo S1 dan S2. Terdapat kendala pada proses pengambilan data dimana responden perempuan cenderung lebih sulit untuk menemukan titik rekaman suara jantung di bandingkan laki-laki dan hanya pada titl-titik sadapan tertentu yang dapat terlihat nilai S1 dan S2 dengan jelas. Hal tersebut dapat diakibatkan oleh frekuensi cut off yang lebar, berkisar antara 10 – 1000 Hz sehingga terdapat noise terutama suara paru-paru.

Kata Kunci—Stetoskop Digital; ; Letak Perekaman; Amplitudo S1 dan S2

I. PENDAHULUAN

Perkembangan teknologi peralatan medis yang semakin cepat di masyarakat membuat sistem perawatan kesehatan menjadi lebih baik dan profesional. Kesadaran masyarakat akan pentingnya kesehatan menyebabkan pemeriksaan dini terhadap diri sendiri semakin populer. Telah banyak teknik yang dikembangkan untuk membuat diagnosis awal lebih cepat dan lebih akurat. Berdasarkan data yang dikeluarkan oleh Organisasi Kesehatan Dunia (WHO) pada April 2011, kematian yang disebabkan oleh penyakit jantung koroner yang tidak menular telah mencapai 37% dari total jumlah kematian di Indonesia. Selain itu, dalam laporan WHO lain menyatakan bahwa pada tahun 2020, diperkirakan bahwa penyakit jantung koroner akan menjadi penyakit pembunuh utama di negara-negara di seluruh Asia-Pasifik [1].

Stetoskop merupakan peralatan medis yang cukup sederhana untuk menentukan kondisi pasien.Obyek pengamatan menggunakan stetoskop biasanya suara jantung atau suara paru. Teknik ini biasa disebut dengan auskultasi..Stetoskop elektronik terdiri dari membran dan

selang dari stetoskop konvensional ditambah dengan mic kondensor yang kemudian terhubung dengan PC melalui soundcard. Suara jantung atau suara paru yang terekam melalui soundcard.Penelitian ini, pengolahan sinyal yang dilakukan hanya sampai untuk memperkuat sinyal atau menghilangkan komponen suara yang mengganggu (noise) sehingga komponen suara paru atau suara jantung yang berisi sinyal informasi dapat lebih diperjelas [2]. Menganalisis bunyi detak jantung atau sinyal phonocardiogram (PCG). Ini Analisis menyangkut empat suara (S1, S2, S3 dan S4) dan sinyal PCG ditampilkan bahwa itu spektral analisis dapat menyediakan fitur yang cukup dari PCG sinyal. Bahwa akan membantu klinik memperoleh kualitatif dan kuantitatif pengukuran dari Sinyal PCG karakteristik dan akibatnya membantu dioagnosis [3]. Pada penelitian belum mencakup dengan mengunakan sensor Mic Kondensor. Selanjutnya, telah dikembangkan stetoskop digital yang telah menggunakan mic condensor dan menggunakan arduino nano dan arduino mega sebagai mikrokontroller. Dimana kelebihan dari penelitian ini ialah telah menggunakan sistem wireless untuk

ISSN: 2684-9518

Prosiding Seminar Nasional Kesehatan

Politeknik Kesehatan Kementerian Kesehatan Surabaya Surabaya, 9 Nopember 2019

menampilkan sinyal detak jantung pada mathlab menggunakan fungsi GUI. Namun pada penelitian ini

masih menggunakan power supply dari PLN sehingga tidak dapat digunakan saat kondisi tertentu [4].

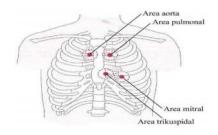
Berdasar penelitian - penelitian yang telah dilakukan sebelumnya maka perlu dilakukan penelitian dengan judul "Rancang Bangun Stetoscope Elektronik Berbasis Mikrokontroller Atmega328". Penelitian ini akan bisa digunakan untuk bahan pembelajaran praktikum diagnostik dasar. Karena peneliti juga ingin mengembang bahwa stetokop elektronik bisa dikembangkan dengan cara menggunakan sensor mic kondensor. dengan pengembangan rangkaian lainnya.

II. BAHAN-BAHAN DAN METODE

A. Setting Percobaan

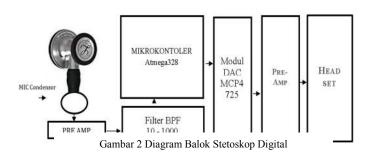
Penelitian ini menggunakan sepuluh subjek normal dengan kriteria usia berkisar antara 20 dan 25 tahun dan beratnya antara 50 hingga 76 kg. Subjek terdiri dari 5 laki-laki dan 5 perempuan yang diambil secara acak dan pengumpulan data diulang sebanyak 6 kali.

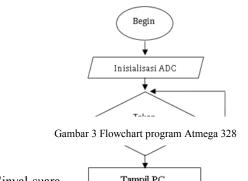
1) Bahan dan Alat

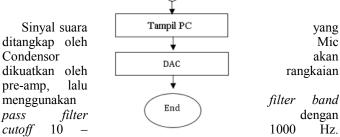

Penelitian ini menggunakan stetoskop akustik (GEA Medical). Titik perekaman suara jantung yang digunakan pada penelitian ini adalah Right Ventricel (RM), Aortic (AO) dan Pulmonary Artery (PM) Sesuai gambar 1. Penguat instrumentasi yang digunakan menggunakan OP-AMP TL084. DC converter ICL7660, Mikrokontroller Atmega 328 digunakan untuk akuisisi data sinyal suara jantung. PC sebagai display phonocardiograph menggunakan aplikasi delphi 7, IC DAC MCP4725 sebagai output hasil pengolahan, dan output suara berupa menggunakan Earphone. Oscilloscope penyimpanan digital (Textronic, DPO2012, Taiwan) digunakan untuk menguji rangkaian analog.

2) Eksperimen

Dalam penelitian ini, setelah desain selesai maka respons frekuensi perangkat ini diuji menggunakan *function generator* dengan inputan 5vdc dan dengan frekuensi input sesuai dengan spesifikasi sinyal suara jantung.


B. Diagram Balok


Pada penelitian ini, perekaman sinyal suara jantung sesuai dengan Gambar 1. Melakukan modifikasi pada stetoskop akustik dengan menanamkan *Mic Condensor* didalamnya.



Gambar 1 Daerah Auskultasi Jantung

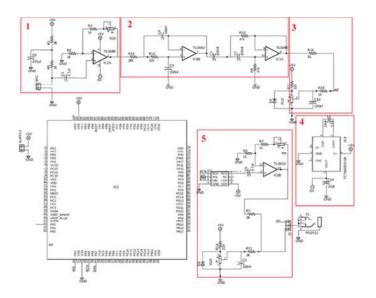
ISSN: 2684-9518

Selanjutnya di baca oleh mikrokontroller untuk di tampilkan. Sinyal tersebut akan diproses pada mikrokontroller untuk menghasilkan suara pada *Earphone* melalui DAC MCP4725 12 bit.

C. Diagram Alir

Program mikrokontroller Atmega 328 menggunakan software Arduino IDE yang di tunjukkan sesuai Gambar 3.

Prosiding Seminar Nasional Kesehatan


Politeknik Kesehatan Kementerian Kesehatan Surabaya

Surabaya, 9 Nopember 2019

Ketika alat dihidupkan, proses akan dimulai dengan melakukan inisialisasi sinyal ADC suara jantung. Jika tombol start ditekan, sinyal suara jantung tersebut akan di tampilkan pada PC dan diubah kembali menjadi sinyal elektrik menggunakan DAC untuk diteruskan pada.

D. Rangkaian Analog

Rangkaian keseluruhan yang diginakan ditunjukkan oleh Gambar 4. Blok 1 adalah *Preamplifier*, blok 2 adalah *band pass*

Gambar 4 Rangkaian Keseluruhan

filt

er (10 – 1000Hz), blok 3 adalah adder, blok 4 adalah DC Conventer, dan blok 5 adalah Digital to Analog Converter.

1) Preamplifier

Berguna untuk memberikan penguatan awal pada masukan, pada blok ini terdapat rangkaian yang berguna sebagai pembagi tegangan dan kapasitor pada kaki 3 (+) yang berguna sebagai DC coupling untuk menghilangkan referensi sinyal sebelum dikuatkan. Rangkaian ini menggunakan rangkaian penguat non-inverting amplifier dengan rumus output

$$Vout = 1 + \frac{Rf}{Rin} \times Vin$$
 (1)

2) Band Pass Filter

Rangkaian ini terdiri dari rangkaian HPF 40dB dengan frekuensi *cutoff* 10 Hz dan rangkaian LPF 40 dB dengan frekuensi *cutoff* 1000 Hz tanpa ada penguatan. Adapun rumus untuk perhitungan frekuensi *cutoff* adalah sebagai berikut:

$$fc = \frac{1}{2\pi RC} \tag{2}$$

Dimana R adalah nilai resistansi resistor, dan C adalah nilai kapasitansi kapasitor, dan fc adalah nilai frekuensi *cutoff*.

ISSN: 2684-9518

3) Adder

Rangkaian ini berfungsi untuk menaikkan referensi dari sinyal sehingga dapat dibaca oleh mikrokontroller. Pada rangkaian ini memanfaatkan pembagian tegangan untuk mengatur tegangan referensinya. Terdapat kapasitor dan dioda zener yang berguna untuk menstabilkan tegangan referensi.

4) DC Converter

Berguna untuk menghasilkan tegangan negatif -5Vdc yang didapat dari modul step-up. Rangkaian ini menggunakan IC 7660 dan terdapat kapasitor dengan nilai 10uf untuk menstabilkan tegangan negatifnya.

5) Digital to Analog Converter

Blok 5 pada gambar 4 menunjukkan ragkaian DAC MCP4921 dengan resolusi 12 bit. Pada blok ini terdapat rangkaian tambahan berupa rangkaian *non-inverting* agar volume suara jantung pada *earphone* dapat diatur secara manual.

III. HASIL

1) Rancang Bangun Stetoskop Digital

Desain analog dan digital dari Stetoskop Digital ditunjukkan pada Gambar. 5 dan Gambar. 6, masing-masing. Bagian analog terdiri dari 1 TL084 (OP-AMP) yang terdiri dari empat OP-AMP, 1 IC L7660 yang berfungsi sebagai *DC converter* untuk menghasilkan tegangan negatif. Terdapat

Gambar 5 Desain Rangkaian

Prosiding Seminar Nasional Kesehatan Politeknik Kesehatan Kementerian Kesehatan Surabaya Surabaya, 9 Nopember 2019

Gambar 6 Desain Mekanis

beberapa variabel resistor (multiturn 10k/100k) untuk penyesuaian gain dan offset. Bagian digital terdiri dari mikrokontroler Arduino Nano yang merupakan *board* utama perangkat ini, modul *charger* TP4056 untuk mengisi daya batre , dan modul MT3608 DC to DC *step-up* untuk menaikkan tegangan batre menjadi 5 Vdc.

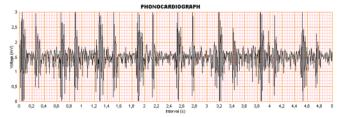
2) Listing Program untuk Stetoskop Digital

Berikut adalah program arduino yang digunakan untuk mengirimkan data serial untuk ditampilkan pada PC dan program DAC.

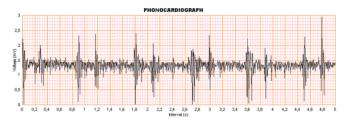
```
#include <SPI.h>
#define WS PA3
#define BCK PA5
#define DATA PA7
unsigned long z,x,y, waktu, ulang=0;
uint16 t hData, lData;
void setup() {
 Serial.begin(256000);
 // Setup SPI 1
 SPI.begin(); //Initialize the SPI 1 port.
 SPI.setBitOrder(MSBFIRST); // Set the SPI 1 bit order
 SPI.setDataMode(SPI MODE0); //Set the SPI 2 data
mode 0
 SPI.setClockDivider(SPI CLOCK DIV16); // Slow speed
(72 / 16 = 4.5 \text{ MHz SPI } 1 \text{ speed})
pinMode(WS, OUTPUT); //Set the Word Select pin (WS)
as output.
 pinMode(PA0, INPUT ANALOG);
 pinMode(PA1, INPUT ANALOG);
void loop() {
 uint16 ti;
 x=map(analogRead(PA1),0,4095,0,32765);
 waktu=millis()-ulang;
 if(waktu > = 6)
```

```
y=map(analogRead(PA0),0,4095,0,1023);
Serial.print("a");
Serial.print(y);
Serial.print("b");

ulang=millis();
}
IData = x;
hData = x;
hData >>= 8;

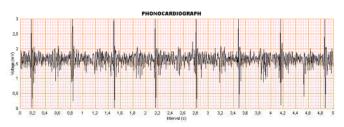

digitalWrite(WS, LOW); //Select RIGHT Audio channel SPI.transfer(hData); // Data bits 15-8
SPI.transfer(lData); // Data bits 7-0

digitalWrite(WS, HIGH); //Select LEFT Audio channel
}
```

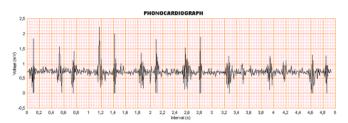

ISSN: 2684-9518

3) Phonocardiograph

Sebelum di aplikasikan ke manusia, telah dilakukan pengjian rangkaian menggunakan Oscilloscope penyimpanan digital (Textronic, DPO2012, Taiwan). Stetoskop digital ini diujikan pada 10 responden dengan 5 responden laki-laki dan 5 responden perempuan, dimana setiap responden diambil data sebanyak 6 kali. Hasil keluaran stetoskop digital berupa sinyal suara jantung yang ditampilkan pada PC untuk melihat sinyal S1 (suara lub), S2 (suara dub), suara S3 yang disebabkan oleh osilasi darah antara dinding aorta dan ventrikular serta S4 yang disebabkan oleh turbulensi injeksi darah dan keluaran suara pada *earphone*. Berikut beberapa contoh tampilan sinyal pada PC menggunakan *software delphi*.

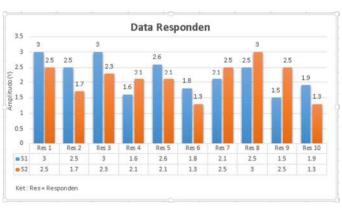


Gambar 7 Data Responden 1



Gambar 8 Data Responden 2

Prosiding Seminar Nasional Kesehatan Politeknik Kesehatan Kementerian Kesehatan Surabaya Surabaya, 9 Nopember 2019


Gambar 9 Data Responden 3

Gambar 10 Data Responden 4

TABEL 1 DATA RESPONDEN 1 HINGGA 10.

Responden	Jenis	Usia	Berat	BB	Posisi	S1	S2
-	Kelamin	(thn)	Badan	Ideal	Rekaman	(mV)	(mV)
			(Kg)	(Kg)			
1	Laki-laki	22	50	58,25	Right	3	2,5
					Ventricle		
2	Laki-laki	20	63	63,9	Right	2,5	1,7
					Ventricel		
3	Perempuan	21	70	55,25	Pulmonary	2,6	2,1
	_				Artery		
4	Perempuan	22	68	62	Aortic	1,6	2,1
5	Laki-laki	21	57	61,2	Right	3	2,3
					Ventricle		
6	Perempuan	21	65	64,25	Pulmonary	1,8	1,3
					Artery		
7	Perempuan	22	58	53,55	Pulmonary	2,1	2,5
	_				Artery		
8	Laki-laki	24	55	62,1	Right	2,5	3
					Ventricle		
9	Laki-laki	25	76	59,4	Right	1,5	2,5
					Ventricle		
10	Perempuan	20	55	57,8	Pulmonary	1,9	1,3
					Artery		

ISSN: 2684-9518

Gambar 11 Grafik amplitudo S1 dan S2 Responden

Setiap responden diambil data sebanyak 6 kali lalu di ratarata maksimal amplitudo sinyal suara jantungnya untuk mendapatkan nilai S1 dan S2 yang lebih akurat untuk setiap respondennya (tabel 1).

IV. PEMBAHASAN

Stetoskop digital ini didesain portabel sehingga memungkinkan penggunaan dimanapun dan kapanpun, menggunakan batre GMA BL-5C 2350 mAh mampu bertahan hingga 6 jam dengan dalam keadaan *stand-by*, dengan waktu 1 jam 30 menit untuk mengisi daya hingga penuh.

Grafik di atas merupakan grafik nilai S1 dan S2 untuk 10 responden. Sinyal suara S1 di tunjukkan oleh grafik berwarna biru, sedangkan sinyal suara S2 ditunjukkan oleh grafik berwarna jingga. Poisisi responden dalam keadaan duduk relaks. Posisi perekaman yang berbeda-beda untuk setiap respondennya. Responden 1, 2, 5, 8 dan 9 merupakan responden berjenis kelamin laki-laki sedangkan responden 3, 4, 6, 7 dan 10 merupakan responden berjenis kelamin perempuan. Nilai amplitudo suara S1 dan S2 berkisar antara 1,3 V hingga 3 Vdimana hal tersebut dapat dipengaruhi oleh titik perekaman, penguatan dan filter yang digunakan. Pada responden 1, 2, 3, 5, 6 dan 10 memiliki nilai amplitudo suara S1 lebih besar di bandingkan nilai S2, sedangkan pada responden 4, 7, 8 dan 9 memiliki nilai amplitudo suara S1 lebih kecil di bandingkan nilai S2. Hal ini dapat disebabkan oleh titik sadapan yang berbeda beda untuk setiap responde. Dari data phonocardiograph pasien diatas menunjukkan noise yang cukup besar akibat sensor mic kondensor yang terlalu sensitif baik oleh kebisingan sekitar maupun oleh gesekan ketika proses perekaman. Pada penelitian sebelumnya telah di kembangkan stetoskop digital dengan menggunakan filter digital FIR dan IIR tampil mathlab manunjukkan bahwa terdapat noise serupa ketika gesekan dan pergerakan selama proses peletakan membran stetoskop [3].

Prosiding Seminar Nasional Kesehatan Politeknik Kesehatan Kementerian Kesehatan Surabaya Surabaya, 9 Nopember 2019

V. KESIMPULAN

Pada penelitian telah berhasil membuat stetoskop elektrik portabel yang terdiri dari rangkaian pre-amplifier, BPF (band pass filter), penguat, adder dan mikrokontroller Atmega328 untuk ditampilkan pada delphi berupa grafik dan data dengan format file .txt menggunakan program komunikasi serial melalui kabel mikroUSB. Dari data yang diperoleh, untuk responden laki-laki maupun perempuan ada banyak faktor yang mempengaruhi amplitudo S1 dan S2 setiap pasien sedangkan untuk nilai S3 dan S4 tidak terlihat dengan jelas. Jika berat badan responden diatas berat badan idealnya maka amplitudo S1 dan S2 akan cenderung lebih kecil dan sebaliknya, jika berat badan responden kurang dari berat badan idealnya maka amplitudo S1 dan S2 akan cenderung lebih besar. Selain itu juga, seberapa kuat stetoskop ditekan ketika melakukan perekaman juga dapat mempengaruhi amplitudo S1dan S2. Terdapat kendala pada proses pengambilan data dimana responden perempuan cenderung lebih sulit untuk menemukan titik rekaman suara jantung di bandingkan laki-laki dan hanya pada titl-titik sadapan tertentu yang dapat terlihat nilai S1 dan S2 dengan jelas. Hal tersebut dapat diakibatkan oleh frekuensi cut off yang digunakan berkisar antara 10 – 1000 Hz yang lebar sehingga memungkin suara noise akan mudah terdeteksi terutama suara paru dan juga toleransi dari nilai resistor serta kapasitor yang digunakan akan mempengaruhi kualitas filter.

DAFTAR PUSTAKA

- Jusak J, Puspasari I. Wireless Tele-Auscultation for Phonocardiograph Signal Recording Through Zigbee Networks. 2015;95–100.
- 2. Achmad Rizal SS. Frequency analysis of the heartbeat sounds. 2018;(May 2014):21–3.
- S.M. DEBBAL FB-R. Stetoskop Elektronik Sederhana Berbasis PC dengan Fasillitas Pengolahan Stetoskop Elektronik Sederhana Berbasis PC dengan Fasillitas Pengolahan Sinyal Digital untuk Auskultasi Jantung dan Paru. 2006;(January 2015).
- Malek SNH, Zaki WSW, Joret A, Jamil MMA. Design and Development of Wireless Stethoscope with Data Logging Function. 2013;132–5.

ISSN: 2684-9518